Python Operators
Operators are special symbols in Python that carry out arithmetic or logical computation. The value that the operator operates on is called the operand.
Arithmetic operators
Arithmetic operators are used to perform mathematical operations like addition, subtraction, multiplication, etc.
	Operator
	Meaning
	Example

	+
	Add two operands or unary plus
	x + y+ 2

	-
	Subtract right operand from the left or unary minus
	x - y- 2

	*
	Multiply two operands
	x * y

	/
	Divide left operand by the right one (always results into float)
	x / y

	%
	Modulus - remainder of the division of left operand by the right
	x % y (remainder of x/y)

	//
	Floor division - division that results into whole number adjusted to the left in the number line
	x // y

	**
	Exponent - left operand raised to the power of right
	x**y (x to the power y)

Comparison operators
Comparison operators are used to compare values. It returns either True or False according to the condition.

	Operator
	Meaning
	Example

	>
	Greater than - True if left operand is greater than the right
	x > y

	<
	Less than - True if left operand is less than the right
	x < y

	==
	Equal to - True if both operands are equal
	x == y

	!=
	Not equal to - True if operands are not equal
	x != y

	>=
	Greater than or equal to - True if left operand is greater than or equal to the right
	x >= y

	<=
	Less than or equal to - True if left operand is less than or equal to the right
	x <= y

Logical operators
Logical operators are the and, or, not operators.
	Operator
	Meaning
	Example

	and
	True if both the operands are true
	x and y

	or
	True if either of the operands is true
	x or y

	not
	True if operand is false (complements the operand)
	not x

Bitwise operators
Bitwise operators act on operands as if they were strings of binary digits. They operate bit by bit, hence the name.
In the table below: Let x = 10 (0000 1010 in binary) and y = 4 (0000 0100 in binary)

	Operator
	Meaning
	Example

	&
	Bitwise AND
	x & y = 0 (0000 0000)

	|
	Bitwise OR
	x | y = 14 (0000 1110)

	~
	Bitwise NOT
	~x = -11 (1111 0101)

	^
	Bitwise XOR
	x ^ y = 14 (0000 1110)

	>>
	Bitwise right shift
	x >> 2 = 2 (0000 0010)

	<<
	Bitwise left shift
	x << 2 = 40 (0010 1000)

Assignment operators
Assignment operators are used in Python to assign values to variables.
a = 5 is a simple assignment operator that assigns the value 5 on the right to the variable a on the left.

	Operator
	Example
	Equivalent to

	=
	x = 5
	x = 5

	+=
	x += 5
	x = x + 5

	-=
	x -= 5
	x = x - 5

	*=
	x *= 5
	x = x * 5

	/=
	x /= 5
	x = x / 5

	%=
	x %= 5
	x = x % 5

	//=
	x //= 5
	x = x // 5

	**=
	x **= 5
	x = x ** 5

	&=
	x &= 5
	x = x & 5

	|=
	x |= 5
	x = x | 5

	^=
	x ^= 5
	x = x ^ 5

	>>=
	x >>= 5
	x = x >> 5

	<<=
	x <<= 5
	x = x << 5

Identity operators
is and is not are the identity operators in Python. They are used to check if two values (or variables) are located on the same part of the memory. Two variables that are equal does not imply that they are identical.

	Operator
	Meaning
	Example

	is
	True if the operands are identical (refer to the same object)
	x is True

	is not
	True if the operands are not identical (do not refer to the same object)
	x is not True

Membership operators
in and not in are the membership operators in Python. They are used to test whether a value or variable is found in a sequence (string, list, tuple, set and dictionary).
In a dictionary we can only test for presence of key, not the value.
	Operator
	Meaning
	Example

	in
	True if value/variable is found in the sequence
	5 in x

	not in
	True if value/variable is not found in the sequence
	5 not in x

